Вред микроволновки: СВЧ излучения. Чем опасны для человека микроволны? Защита от электромагнитных излучений персональных электронно-вычислительных машин

Защита персонала, обслуживающего установки ВЧ, УВЧ и СВЧ достигается:

    уменьшением излучения непосредственно от самого источника излучения;

    экранированием источника излучения;

    экранированием рабочего места у источника излучений или удалением рабочего места от него (дистанционное управление);

    применением в отдельных случаях средств индивидуальной защиты. Интенсивность ЭМП радиочастот на рабочих местах не должна превышать:

    в диапазоне СВЧ при облучении в течение всего рабочего дня - 10мкВт/см 2 .

    при облучении не более двух часов за рабочий день - 100мкВт/см 2 , при облучении не более 10-15мин за рабочий день -мкВт/см 2 (мВт/см 2), при условии обязательного пользования защитными очками;

    в диапазоне СВЧ для лиц, не связанных профессионально с облучением, и для населения интенсивность излучения не должна превышать 1мк Вт/см 2 . Выбор способа защиты или комбинации их определяются типом источника излучения, рабочим диапазоном волн, характером выполняемых работ.

Для уменьшения интенсивности излучения от источника необходимо:

    при обработке высокочастотной части РЛС, отдельных СВЧ генераторов и т.п. применять различные типы поглотителей мощности, эквиваленты нагрузок;

    использовать имитаторы цели при проверках индикаторных, приемных вычислительных, управляющих и т.п. систем РЛС, когда не требуется включения генераторных и излучающих высокочастотных устройств (передатчиков, антенн);

    использовать волноводные ответвители, ослабители, делители мощности при отработке линий передачи энергии и антенных устройств;

    во всех случаях работы с аппаратурой необходимо убедиться в отсутствии утечек энергии на линиях передачи -местах сочленения элементов волноводного тракта, из катодных выводов магнетронов и т.п.

Экранирование источников излучения и рабочих мест выполняется различно в зависимости от генерируемой мощности, взаимного расположения источника и рабочего места, характера технологического процесса.

Испытания источников излучения на высоком уровне мощности (антенные устройства, комплексы РЛС) должны проводится, как правило, на специальных полигонах.

Требования к производственным помещениям и размещению оборудования:

    действующие генераторы СВЧ, радио и телевизионные передатчики должны размещаться в специально предназначенных помещениях;

    при работе нескольких генераторов СВЧ в одном помещении необходимо принять меры, исключающие превышение ПДУ облучения за счет суммирования энергии излучения;

    при работе генераторов СВЧ, радиопередающих и телевизионных устройств большой мощностью излучения необходимо исключить возможность облучения людей, постоянно находящихся в смежных с производственными помещениях;

    на антенных полях радиостанций, полигонах, аэродромах и на других, не ограниченных помещением участках должны быть обозначены места, где интенсивность облучения может превышать допустимую.

В зависимости от типа источника излучений, его мощности, характера технологического процесса может быть применен один из указанных методов защиты или любая из комбинаций.

Для защиты от проникновения СВЧ энергии в рабочее помещение рекомендуется экранировать источники излучения. Экранирование не должно нарушать процесс регулировки настройки испытания при работе с излучающим устройством. Поэтому при конструкции экранирующих приспособлений необходимо учитывать основные параметры, характеризующие излучение и назначение производственного процесса, связанного с экранирующим источником излучения.

Тип, форма, размеры и материал экранирующего устройства зависит от того, имеет ли место непосредственное излучение, направленное или ненаправленное, непрерывное или импульсное, какова излучаемая мощность и рабочий диапазон частот.

Любая экранирующая система для защиты от проникновения СВЧ энергии основана на радиофизических принципах отражения или поглощения электромагнитной энергии.

Известно, что полное отражение электромагнитной волны обеспечивается материалами с высокой электропроводимостью (металлы), полное поглощение возможно в материалах с плохой электропроводимостью (полупроводники, диэлектрики с большими потерями).

С учетом указанных свойств материалов, характера и параметров источника излучения, особенностей производственного процесса был рекомендован и внедрен в практику ряд типовых экранирующих устройств, которые показали хорошую эффективность.

Типы экранов:

Отражающие экраны . Если производственный процесс основан на непосредственном излучении энергии волн в пространстве, полное или частичное экранирование источника может привести к нарушению процесса или даже к невозможности его осуществления. Волны, отражаемые стенками эксплуатирующих устройств, обращенные в сторону излучателя, будут оказывать влияние на режим работы РЛС: пробой в генераторных лампах передатчиков, изменение его рабочей частоты и т.д.

В подобных случаях рационально применять поглощающие покрытия. Отражающие поверхности экранирующего устройства покрываются материалом, практически полностью поглощающим энергию падающих волн.

В тех случаях, когда имеются только утечки в линиях передачи СВЧ энергии, отражения от стенок экранирующего устройства не оказывают влияния на режим работы излучателя генераторной установки или РЛС в целом, экранировка может быть сделана без поглощающих покрытий.

Экраны могут быть использованы: для экранирования помещения, источника излучения, рабочего места. Все экраны должны быть тщательно заземлены.

Сплошные металлические экраны обеспечивают надежное экранирование при любых, практически встречающихся интенсивностях СВЧ поле с учетом допустимых величин (10мкВт/см 2). Экран может быть изготовлен из металла любой толщины. При толщине экрана в 0,01мм поле СВЧ ослабляется примерно в 100000 раз. Следовательно, ослабление в сплошных металлических экранах достаточно велико и для облегчения веса можно пользоваться даже тонкой металлической фольгой.

Сетчатые экраны обладают худшими экранирующими свойствами. Однако в ряде случаев по техническим соображениям и когда требуется ослабление потока мощности СВЧ в 100-1000,экраны из сеток находят широкое применение. Форма экранирующего устройства может быть в виде:

Экранированной камеры (замкнутого экрана);

Незамкнутого экрана.

В качестве замкнутого экрана может быть рассмотрен металлический каркас шкафа передатчика. В период регулировки в случае необходимости наблюдения за режимом работы всей генераторной установки обшивку и

дверцы шкафа, выполненные из листового металла, можно временно заменять обшивкой и дверцами, выполненными из металлической сетки.

Экранированную камеру можно рекомендовать для отдельных производственных процессов в случае направленного излучения, когда интенсивность источника излучения слишком большая. В этом случае может оказаться необходимым экранирование двойной камерой из сетки или сплошным листовым металлом.

Размеры экранирующей камеры определяются размерами источника излучения и рабочего помещения, однако, минимально возможные размеры камеры обуславливаются в первую очередь значением излучаемой мощности.

С направленным излучением приходится встречаться, главным образом, при испытании комплекса РЛС, испытаниях антенных устройств, отработке элементов СВЧ тракта на устранение электрических пробоев и других работах.

Большинство работ, связанных с направленным облучением, относится к испытаниям и исследованиям антенных устройств (снятие диаграммы направленности, измерение частотных характеристик антенн). Несмотря на то, что эти исследования чаще всего производятся на невысоких уровнях мощности от измерительных генераторов (до 5Вт), интенсивность облучения может значительно превышать допустимые величины плотности потока мощности (ППМ).

В зависимости от характера работ могут быть применены различные формы незамкнутых экранов и материалы для их изготовления.

Форма, размер, материал замкнутого экрана по отношению к источнику излучения должны выбираться в каждом конкретном случае с таким расчетом, чтобы работающие в данном помещении не подвергались облучению с интенсивностью выше допустимой нормы.

Среди огромного разнообразия электромагнитных волн, существующих в природе, весьма скромное место занимает микроволновое или сверхвысокочастотное излучение (СВЧ). Отыскать этот частотный диапазон можно между радиоволнами и инфракрасной частью спектра. Протяжённость его не особенно велика. Это волны длиной от 30 см до 1 мм.

Поговорим о его происхождении, свойствах и роли в сфере обитания человека, о том, как влияет этот «молчаливый невидимка» на человеческий организм.

Источники СВЧ-излучения

Существуют природные источники микроволнового излучения - Солнце и другие космические объекты. На фоне их излучения и происходило формирование и развитие человеческой цивилизации.

Но в наш, насыщенный всевозможными техническими достижениями век, к естественному фону присовокупились ещё и рукотворные источники:

  • радиолокационные и радионавигационные установки;
  • системы спутникового телевидения;
  • сотовые телефоны и микроволновые печи.

Как микроволновое излучение влияет на здоровье человека

Результаты исследования влияния микроволнового излучения на человека позволили установить, что СВЧ лучи не обладают ионизирующим действием. Ионизированные молекулы - это дефектные частички вещества, приводящие к мутации хромосом. В результате живые клетки могут приобрести новые (дефектные) признаки. Этот вывод не означает, что микроволновое излучение не оказывает вред на человека.

Изучение влияния СВЧ-лучей на человека, позволило установить следующую картину - при их попадании на облучаемую поверхность, происходит частичное поглощение поступающей энергии тканями человека. В результате в них возбуждаются высокочастотные токи, нагревающие организм.

Как реакция механизма терморегуляции, следует усиление циркуляции крови. Если облучение было локальным, возможен быстрый отвод тепла от разогретых участков. При общем облучении такой возможности нет, поэтому оно является более опасным.

Поскольку циркуляция крови выполняет роль охлаждающего фактора, то в органах, обеднённых кровеносными сосудами, тепловой эффект выражен наиболее ярко. В первую очередь - в хрусталике глаза, вызывая его помутнение и разрушение. К сожалению, эти изменения необратимы.

Наиболее значительной поглощательной способностью отличаются ткани с большим содержанием жидкого компонента: крови, лимфы, слизистой желудка, кишечника, хрусталика глаза.

В результате могут наблюдаться:

  • изменения в крови и щитовидной железе;
  • снижение эффективности адаптационных и обменных процессов;
  • изменения в психической сфере, которые могут привести к депрессивным состояниям, а у людей с неустойчивой психикой - спровоцировать склонность к суициду.

Микроволновое излучение обладает кумулятивным эффектом. Если в первое время его воздействие проходит бессимптомно, то постепенно начинают формироваться патологические состояния. Вначале они проявляются в учащении головных болей, быстрой утомляемости, нарушениях сна, повышении артериального давления, сердечных болях.

При длительном и регулярном воздействии СВЧ излучение приводит к глубинным изменениям, перечисленным ранее. То есть, можно утверждать, что СВЧ излучение оказывает негативное влияние на здоровье человека. Причём отмечена возрастная чувствительность к микроволнам - молодые организмы оказались более подверженными влиянию СВЧ ЭМП (электромагнитного поля).

Средства защиты от СВЧ-излучения

Характер воздействия СВЧ излучения на человека зависит от следующих факторов:

  • удалённости от источника излучения и его интенсивности;
  • продолжительности облучения;
  • длины волны;
  • вида излучения (непрерывное или импульсное);
  • внешних условий;
  • состояния организма.

Для количественной оценки опасности введено понятие плотности излучения и допустимой нормы облучения. В нашей стране этот стандарт взят с десятикратным «запасом прочности» и равен 10 микроватт на сантиметр (10 мкВт/см). Это означает, что мощность потока СВЧ энергии, на рабочем месте человека не должна превышать 10 мкВт на каждый сантиметр поверхности.

Как же быть? Сам собой напрашивается вывод, что следует всячески избегать воздействия микроволновых лучей. Уменьшить воздействие СВЧ-излучения в сфере быта достаточно просто: следует ограничить время контакта с бытовыми его источниками.

Совершенно иной механизм защиты должен быть у людей, чья профессиональная деятельность связана с воздействием СВЧ радиоволн. Средства защиты от СВЧ-излучения подразделяются на общие и индивидуальные.

Поток излучаемой энергии убывает обратно пропорционально увеличению квадрата расстояния между излучателем и облучаемой поверхностью. Поэтому важнейшей коллективной защитной мерой является увеличение расстояния до источника излучения.

Другими действенными мерами по защите от СВЧ-излучения являются следующие:

Большая часть из них базируется на основных свойствах микроволнового излучения - отражении и поглощении веществом облучаемой поверхности. Поэтому защитные экраны подразделяются на отражающие и поглощающие.

Отражательные экраны выполняются из листового металла, металлической сетки и металлизированной ткани. Арсенал защитных экранов достаточно разнообразен. Это листовые экраны из однородного металла и многослойные пакеты, включающие слои изоляционных и поглощающих материалов (шунгита, углеродистых соединение) и т. д.

Конечным звеном в этой цепи являются средства индивидуальной защиты от СВЧ-излучения. Они включают спецодежду, выполненную из металлизированной ткани (халаты и фартуки, перчатки, накидки с капюшонами и вмонтированными в них очками). Очки покрыты тончайшим слоем металла, отражающего излучение. Их ношение обязательно при облучении в 1 мкВт/см.

Ношение спецодежды снижает уровень облучения в 100–1000 раз.

Польза микроволнового излучения

Вся предыдущая информация c негативной направленностью, имеет своей целью упредить нашего читателя от, исходящей от СВЧ-излучения, опасности. Однако среди специфических действий микроволновых лучей встречается термин стимуляция, то есть улучшение под их влиянием общего состояния организма или чувствительности его органов. То есть воздействие СВЧ-излучения на человека может быть и полезным. Терапевтическое свойство микроволнового излучения основано на его биологическом действии при физиотерапии.

Излучения, исходящие от специализированного медицинского генератора, проникает в организм человека на заданную глубину, вызывая прогревание тканей и целую систему полезных реакций. Сеансы СВЧ-процедур оказывают болеутоляющее и противозудное действие.

Их с успехом используют для лечения фронтита и гайморита, невралгии тройничного нерва.

Для воздействия на эндокринные органы, органы дыхания, почки, и лечения гинекологических заболеваний используют микроволновое излучение с большей проникающей способностью.

Исследование влияния СВЧ-излучения на организм человека начались несколько десятилетий назад. Накопленных знаний достаточно, чтобы быть уверенными в безвредности естественного фона этих излучений для человека.

Разнообразные генераторы этих частот, создают дополнительную дозу воздействия. Однако, их доля очень мала, а, используемая защита достаточно надёжна. Поэтому фобии об их огромном вреде не более чем миф, если соблюдаются все условия эксплуатации и защиты от промышленных и бытовых источников микроволновых излучателей.

Защита персонала, обслуживающего установки ВЧ, УВЧ и СВЧ достигается:

    уменьшением излучения непосредственно от самого источника излучения;

    экранированием источника излучения;

    экранированием рабочего места у источника излучений или удалением рабочего места от него (дистанционное управление);

    применением в отдельных случаях средств индивидуальной защиты. Интенсивность ЭМП радиочастот на рабочих местах не должна превышать:

    в диапазоне СВЧ при облучении в течение всего рабочего дня - 10мкВт/см 2 .

    при облучении не более двух часов за рабочий день - 100мкВт/см 2 , при облучении не более 10-15мин за рабочий день -мкВт/см 2 (мВт/см 2), при условии обязательного пользования защитными очками;

    в диапазоне СВЧ для лиц, не связанных профессионально с облучением, и для населения интенсивность излучения не должна превышать 1мк Вт/см 2 . Выбор способа защиты или комбинации их определяются типом источника излучения, рабочим диапазоном волн, характером выполняемых работ.

Для уменьшения интенсивности излучения от источника необходимо:

    при обработке высокочастотной части РЛС, отдельных СВЧ генераторов и т.п. применять различные типы поглотителей мощности, эквиваленты нагрузок;

    использовать имитаторы цели при проверках индикаторных, приемных вычислительных, управляющих и т.п. систем РЛС, когда не требуется включения генераторных и излучающих высокочастотных устройств (передатчиков, антенн);

    использовать волноводные ответвители, ослабители, делители мощности при отработке линий передачи энергии и антенных устройств;

    во всех случаях работы с аппаратурой необходимо убедиться в отсутствии утечек энергии на линиях передачи -местах сочленения элементов волноводного тракта, из катодных выводов магнетронов и т.п.

Экранирование источников излучения и рабочих мест выполняется различно в зависимости от генерируемой мощности, взаимного расположения источника и рабочего места, характера технологического процесса.

Испытания источников излучения на высоком уровне мощности (антенные устройства, комплексы РЛС) должны проводится, как правило, на специальных полигонах.

Требования к производственным помещениям и размещению оборудования:

    действующие генераторы СВЧ, радио и телевизионные передатчики должны размещаться в специально предназначенных помещениях;

    при работе нескольких генераторов СВЧ в одном помещении необходимо принять меры, исключающие превышение ПДУ облучения за счет суммирования энергии излучения;

    при работе генераторов СВЧ, радиопередающих и телевизионных устройств большой мощностью излучения необходимо исключить возможность облучения людей, постоянно находящихся в смежных с производственными помещениях;

    на антенных полях радиостанций, полигонах, аэродромах и на других, не ограниченных помещением участках должны быть обозначены места, где интенсивность облучения может превышать допустимую.

В зависимости от типа источника излучений, его мощности, характера технологического процесса может быть применен один из указанных методов защиты или любая из комбинаций.

Для защиты от проникновения СВЧ энергии в рабочее помещение рекомендуется экранировать источники излучения. Экранирование не должно нарушать процесс регулировки настройки испытания при работе с излучающим устройством. Поэтому при конструкции экранирующих приспособлений необходимо учитывать основные параметры, характеризующие излучение и назначение производственного процесса, связанного с экранирующим источником излучения.

Тип, форма, размеры и материал экранирующего устройства зависит от того, имеет ли место непосредственное излучение, направленное или ненаправленное, непрерывное или импульсное, какова излучаемая мощность и рабочий диапазон частот.

Любая экранирующая система для защиты от проникновения СВЧ энергии основана на радиофизических принципах отражения или поглощения электромагнитной энергии.

Известно, что полное отражение электромагнитной волны обеспечивается материалами с высокой электропроводимостью (металлы), полное поглощение возможно в материалах с плохой электропроводимостью (полупроводники, диэлектрики с большими потерями).

С учетом указанных свойств материалов, характера и параметров источника излучения, особенностей производственного процесса был рекомендован и внедрен в практику ряд типовых экранирующих устройств, которые показали хорошую эффективность.

Типы экранов:

Отражающие экраны . Если производственный процесс основан на непосредственном излучении энергии волн в пространстве, полное или частичное экранирование источника может привести к нарушению процесса или даже к невозможности его осуществления. Волны, отражаемые стенками эксплуатирующих устройств, обращенные в сторону излучателя, будут оказывать влияние на режим работы РЛС: пробой в генераторных лампах передатчиков, изменение его рабочей частоты и т.д.

В подобных случаях рационально применять поглощающие покрытия. Отражающие поверхности экранирующего устройства покрываются материалом, практически полностью поглощающим энергию падающих волн.

В тех случаях, когда имеются только утечки в линиях передачи СВЧ энергии, отражения от стенок экранирующего устройства не оказывают влияния на режим работы излучателя генераторной установки или РЛС в целом, экранировка может быть сделана без поглощающих покрытий.

Экраны могут быть использованы: для экранирования помещения, источника излучения, рабочего места. Все экраны должны быть тщательно заземлены.

Сплошные металлические экраны обеспечивают надежное экранирование при любых, практически встречающихся интенсивностях СВЧ поле с учетом допустимых величин (10мкВт/см 2). Экран может быть изготовлен из металла любой толщины. При толщине экрана в 0,01мм поле СВЧ ослабляется примерно в 100000 раз. Следовательно, ослабление в сплошных металлических экранах достаточно велико и для облегчения веса можно пользоваться даже тонкой металлической фольгой.

Сетчатые экраны обладают худшими экранирующими свойствами. Однако в ряде случаев по техническим соображениям и когда требуется ослабление потока мощности СВЧ в 100-1000,экраны из сеток находят широкое применение. Форма экранирующего устройства может быть в виде:

Экранированной камеры (замкнутого экрана);

Незамкнутого экрана.

В качестве замкнутого экрана может быть рассмотрен металлический каркас шкафа передатчика. В период регулировки в случае необходимости наблюдения за режимом работы всей генераторной установки обшивку и

дверцы шкафа, выполненные из листового металла, можно временно заменять обшивкой и дверцами, выполненными из металлической сетки.

Экранированную камеру можно рекомендовать для отдельных производственных процессов в случае направленного излучения, когда интенсивность источника излучения слишком большая. В этом случае может оказаться необходимым экранирование двойной камерой из сетки или сплошным листовым металлом.

Размеры экранирующей камеры определяются размерами источника излучения и рабочего помещения, однако, минимально возможные размеры камеры обуславливаются в первую очередь значением излучаемой мощности.

С направленным излучением приходится встречаться, главным образом, при испытании комплекса РЛС, испытаниях антенных устройств, отработке элементов СВЧ тракта на устранение электрических пробоев и других работах.

Большинство работ, связанных с направленным облучением, относится к испытаниям и исследованиям антенных устройств (снятие диаграммы направленности, измерение частотных характеристик антенн). Несмотря на то, что эти исследования чаще всего производятся на невысоких уровнях мощности от измерительных генераторов (до 5Вт), интенсивность облучения может значительно превышать допустимые величины плотности потока мощности (ППМ).

В зависимости от характера работ могут быть применены различные формы незамкнутых экранов и материалы для их изготовления.

Форма, размер, материал замкнутого экрана по отношению к источнику излучения должны выбираться в каждом конкретном случае с таким расчетом, чтобы работающие в данном помещении не подвергались облучению с интенсивностью выше допустимой нормы.

на тему: Защита от СВЧ- излучений

Цель работы

  • 1) ознакомиться с характеристиками электромагнитного излучения и нормативными требованиями к его уровням;
  • 2) провести измерения интенсивности электромагнитного излучения СВЧ-диапазона на различных расстояниях от источника;
  • 3) оценить эффективность защиты от СВЧ-излучения с помощью экранов из различных материалов. магнитный поле излучение защита
  • 1. Теоретическая часть

Электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Электрическое поле характеризуется напряженностью Е, В/м; магнитное поле характеризуется напряженностью Н, А/м, или плотностью магнитного потока В, Тл.

Таблица 1. ПДУ СВЧ - излучений

Внешний вид стенда для проведения Л.Р. №1 представлен на рисунке 1.

Рис. 1. Стенд лабораторный "Защита от СВЧ-излучения БЖ 5м"

В качестве источника СВЧ излучения используется бытовая СВЧ-печь.

Стенд представляет собой стол лабораторный 1, на котором размещаются СВЧ печь 2, стойка 5 с датчиком 4 измерителя плотности потока энергии (далее - датчик), узлы 6 установки сменных защитных экранов.

Стол выполнен в виде металлического сварного каркаса со столешницей, на поверхности которой с помощью самоклеющейся бумаги Jet Laser нанесена координатная сетка 3 с изображением осей X и Y.

Стенд обеспечивает три степени свободы перемещения датчика (перемещение по осям X,Y,Z), что дает возможность исследовать излучение со стороны передней панели СВЧ печи (место наиболее интенсивного излучения) и по всей площади координатной сетки.

В качестве нагрузки в СВЧ печи используется огнеупорный шамотный кирпич, устанавливаемый на неподвижную подставку, в качестве которой используется неглубокая фаянсовая тарелка, что обеспечивает стабильность измеряемого сигнала (предварительно удаляются из печи поворачивающийся столик и роликовое кольцо).

Датчик 4 выполнен в виде полуволнового вибратора на частоту 2,45 ГГц, закрепленного на стойке 5 с возможностью перемещения по вертикали (ось Z), выполненной из диэлектрического материала.

Узлы 6 установки сменных защитных экранов обеспечивают оперативную установку и замену экрана 7. Сменные экраны имеют один типоразмер. Экраны изготовлены из следующих материалов: металлическая сетка, металлический лист, резина, полистирол ударопрочный.

В качестве измерительного прибора используется мультиметр 8, который располагается на свободной части столешницы (за пределами координатной сетки).

2. Практическая часть

Результаты измерений

Таблица 2. Результаты измерений интенсивности излучения

Номер измерения

Координата Х, см

Координата Y, см

Координата Z, см

Интенсивность излучения

Показания мультиметра, мкА

ППЭ, мкВт/см 2

Таблица 3. Эффективность экранирования

Вывод

В результате лабораторной работы были изучены характеристики электромагнитного излучения и нормативные требованиями к его уровням, проведены измерения интенсивности электромагнитного излучения СВЧ-диапазона на различных расстояниях от источника, оценена эффективность защиты от СВЧ-излучения с помощью экранов из различных материалов. В результате измерений было установлено, что наиболее эффективными защитными материалами являются металлический экран, металлическая мелкая сетка и ПВХ, а наименее эффективной оказалась резина. СВЧ излучение на расстоянии от 40 см является оптимальным.

Ответы на контрольные вопросы: 1 вопрос.

Основные характеристики ЭМП. Какие параметры характеризуют ЭМП в «ближней» и «дальней» зонах? Электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Электрическое поле характеризуется напряженностью Е, В/м; магнитное поле характеризуется напряженностью Н, А/м, или плотностью магнитного потока В, Тл. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле с напряженностью Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне). Электромагнитные волны характеризуются длиной волны л, м, или частотой f , Гц. Для вакуума справедливо соотношение л = с / f , где с - скорость света в вакууме, равная 3 х 108 м/с. В области классификации частот ЭМП следует отметить строго ограниченный диапазон - от 0 Гц (статические поля) до 300 ГГц. Хотя инфракрасное, световое, ультрафиолетовое, рентгеновское излучения (и далее) также имеют электромагнитную природу, как правило, под ЭМП понимают электромагнитные поля и колебания именно в отмеченном диапазоне. На сегодняшний день находят применение три шкалы частот: - "радиотехническая", изложенная в Регламенте радиосвязи; - "медицинская", приведенная в документах ВОЗ; - "электротехническая", предложенная Международным электротехническим комитетом (МЭК), которая является наиболее распространенной. По третьей шкале классификация ЭМП выглядит следующим образом: - низкочастотные (НЧ) - от 0 до 60 Гц; - среднечастотные (СЧ) - от 60 Гц до 10 кГц; - высокочастотные (ВЧ) - от 10 кГц до 300 МГц; - сверхвысокочастотные (СВЧ) - от 300 МГц до 300 ГГц. По энергетическому спектру ЭМП разделяются на следующие группы, первоначально разделенные в теории электромагнитной совместимости: синусоидальные (монохроматические); модулированные; импульсные; флуктуационные (шумовые). Характеризуя зоны воздействия ЭМП, во всех исследованиях, как правило, рассматривают монохроматические поля. Обозначая длину волны ЭМП л, на расстоянии от источника r, выделяют три зоны воздействия 1) ближняя (зона индукции): л / r > > 1; 2) промежуточная (резонансная): л / r ? 1; 3) дальняя (волновая, или квазиоптическая): л / r < < 1. Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < л, ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату (кубу) расстояния от источника r2 (r3). В "ближней" зоне излучения электромагнитная волна еще не сформирована. ЭМП в зоне индукции служит для формирования бегущих составляющих поля, ответственных за излучение (электромагнитной волны). Для характеристики ЭМП в ближней зоне измерения напряженности электрического поля Е и напряженности магнитного поля Н производятся раздельно. "Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3 л. В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r. В "дальней" зоне излучения есть связь между величинами Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. В России на частотах свыше 300 МГц до 300 ГГц (СВЧ - диапазон) измеряется плотность потока электромагнитной энергии ППЭ, Вт/м2, или вектор Пойнтинга. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны. Чем больше частота излучения f (соответственно, короче длина волны л), тем больше энергия кванта излучения. Связь между энергией Y и частотой f электромагнитных колебаний определяется как Y = h f , где h - постоянная Планка, равная = 6,6 х 10 34 Вт/см 2. Таким образом, ЭМП в дальней (волновой) зоне характеризуется как электромагнитное излучение (ЭМИ), или СВЧ-излучение, а его интенсивность определяется как ППЭ в Вт/м2 (мВт/см2, мкВт/см2).

Ответ на 2 вопрос

Нормы воздействия СВЧ-излучений на работающих и население. Российскими нормативными документами, устанавливающими предельно допустимые уровни (ПДУ) ЭМИ, являются существующие параллельно Государственные стандарты Системы стандартов безопасности труда (ССБТ) и санитарные правила и нормы (СанПин). Гигиенические стандарты и нормы традиционно разрабатывались для двух категорий облучения - профессионального, т.е. облучения на рабочих местах, и непрофессионального - облучения населения, профессионально не связанного с использованием ЭМП. В последнее время формируется еще одна категория - профессиональное облучение особого контингента населения. К нему, прежде всего, относятся женщины в состоянии беременности и лица, не достигшие 18 лет; для этих лиц в современных российских нормах установлены достаточно жесткие ПДУ. Зарубежные стандарты разрабатываются преимущественно на экспериментально-расчетных методах, причем выводы строятся на основе острых опытов с выраженными поражениями биообъекта. Такой подход позволил выполнить непрерывное нормирование во всем диапазоне ЭМП от 0 Гц до 300 ГГц. В ряде зарубежных стандартов дополнительно установлены особые ПДУ также для людей с имплантированными кардиостимуляторами. Биофизической основой для разработки отечественных нормативных документов послужили две группы биоэффектов, помимо "кратковременного термического": - кумуляция эффекта воздействия в организме при длительном непрерывном и дробном воздействии, особенно в пределах дотепловых уровней; - обратимость эффектов и адаптация облучаемого организма при наличии больших пауз между экспозициями. Подобный подход потребовал значительного объема медико-биологических исследований и не позволил интерполировать результаты нормирования на другие частотные диапазоны. Этим, в частности, объясняется разрывный (ступенчатый) характер отечественных ПДУ, к тому же не перекрывающих весь частотный диапазон от 0 Гц до 300 ГГц. Следует отметить, что темпы развития техники существенно опережают темпы разработки отечественных стандартов и норм. ПДУ ППЭ в диапазоне частот свыше 300 МГц до 300 ГГц, согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях", представлены в табл.1. Т а б л и ц а 1 ПДУ СВЧ-излучений Категория облучаемых лиц Плотность потока энергии СВЧ-излучения, мкВт/см2 Работающие с источниками излучения в течение 8-часовой смены 10 Не более 2 час. в смену 100 Не более 20 мин. в смену 1000 Лица, не связанные с источниками излучения профессионально 1 Население 1 Оценка и нормирование воздействия ЭМП диапазона частот свыше 30 кГц до 300 ГГц, включая СВЧ ЭМИ, осуществляется по величине энергетической экспозиции (ЭЭ). Энергетическая экспозиция в диапазоне частот свыше 300 МГц до 300 ГГц рассчитывается по формуле:

ЭЭппэ = ППЭ х Т, (Вт/м2) ч, (мкВт/см2) ч, (1) где ППЭ - плотность потока энергии (Вт/м2, мкВт/см2); Т - время воздействия за смену (час.). ПДУ ЭЭ в диапазоне частот свыше 300 МГц до 300 ГГц на рабочих местах за смену не должен превышать величины 200 мкВт/см2 х час.

  • 3 вопрос. Организационные и лечебно-профилактические мероприятия по защите от ЭМП. Организационные мероприятия при проектировании и эксплуатации оборудования, являющегося источником ЭМП или объектов, оснащенных источниками ЭМП, включают: - выбор рациональных режимов работы оборудования; - выделение зон воздействия ЭМП (зоны с уровнями ЭМП, превышающими предельно допустимые, где по условиям эксплуатации не требуется даже кратковременное пребывание персонала, должны ограждаться и обозначаться соответствующими предупредительными знаками); - расположение рабочих мест и маршрутов передвижения обслуживающего персонала на расстояниях от источников ЭМП, обеспечивающих соблюдение ПДУ; - проведение ремонта оборудования, являющегося источником ЭМП, вне зоны влияния ЭМП от других источников (по возможности); - соблюдение правил безопасной эксплуатации источников ЭМП. Защита временем применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимого уровня. В действующих ПДУ предусмотрена зависимость между интенсивностью плотности потока энергии и временем облучения. Защита расстоянием применяется, если невозможно ослабить ЭМП другими мерами, в том числе и защитой временем. Защита расстоянием положена в основу зон нормирования излучений для определения необходимого разрыва между источниками ЭМП и жилыми домами, служебными помещениями и т.п. Для каждой установки, излучающей электромагнитную энергию, должны определяться санитарно-защитные зоны в которых интенсивность ЭМП превышает ПДУ. Границы зон определяются расчетно для каждого конкретного случая размещения излучающей установки при работе их на максимальную мощность излучения и контролируются с помощью приборов. В соответствии с ГОСТ 12.1.026-80 зоны излучения ограждаются либо устанавливаются предупреждающие знаки с надписями: «Не входить, опасно!». В целях предупреждения и раннего обнаружения изменений состояния здоровья все лица, профессионально связанные с обслуживанием и эксплуатацией источников ЭМП, должны проходить предварительный при поступлении и периодические профилактические медосмотры в соответствии с действующим законодательством. Лица, не достигшие 18-летнего возраста, и женщины в состоянии беременности допускаются к работе в условиях воздействия ЭМП только в случаях, когда интенсивность ЭМП на рабочих местах не превышает ПДУ, установленных для населения.
  • 4 вопрос. Инженерно-технические методы и средства защиты от ЭМП. Инженерно-технические мероприятия должны обеспечивать снижение уровней ЭМП на рабочих местах путем внедрения новых технологий и применения средств коллективной и индивидуальной защиты (когда фактические уровни ЭМП на рабочих местах превышают ПДУ, установленные для производственных воздействий). Руководители организаций для снижения риска вредного влияния ЭМП, создаваемого средствами радиолокации, радионавигации, связи, в том числе подвижной и космической, должны обеспечивать работающих средствами индивидуальной защиты. Инженерно-технические защитные мероприятия строятся на использовании явления экранирования электромагнитных полей непосредственно в местах пребывания человека либо на мероприятиях по ограничению эмиссионных параметров источника поля. Последнее, как правило, применяется на стадии разработки изделия, служащего источником ЭМП. Радиоизлучения могут проникать в помещения, где находятся люди, через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов - медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью. Будучи нанесенной на одну сторону поверхности стекла она ослабляет интенсивность излучения в диапазоне 0,8 - 150 см на 30 дБ (в 1000 раз). При нанесении пленки на обе поверхности стекла ослабление достигает 40 дБ (в 10000 раз). Для защиты населения от воздействия электромагнитных излучений в строительных конструкциях в качестве защитных экранов могут применяться металлическая сетка, металлический лист или любое другое проводящее покрытие, в том числе и специально разработанные строительные материалы. В ряде случаев достаточно использования заземленной металлической сетки, помещаемой под облицовочный или штукатурный слой. В качестве экранов могут применяться также различные пленки и ткани с металлизированным покрытием. В последние годы в качестве радиоэкранирующих материалов получили металлизированные ткани на основе синтетических волокон. Их получают методом химической металлизации (из растворов) тканей различной структуры и плотности. Существующие методы получения позволяет регулировать количество наносимого металла в диапазоне от сотых долей до единиц мкм и изменять поверхностное удельное сопротивление тканей от десятков до долей Ом. Экранирующие текстильные материалы обладают малой толщиной, легкостью, гибкостью; они могут дублироваться другими материалами (тканями, кожей, пленками), хорошо совмещаются со смолами и латексами.
  • 5 вопрос. Чем определяется эффективность применяемых защитных экранов? Эффективность средств защиты определяется по степени ослабления интенсивности ЭМП, выражающейся коэффициентом экранирования (коэффициент поглощения или отражения), и должна обеспечивать снижение уровня излучения до безопасного в течение времени, определяемого назначением изделия. Оценка безопасности и эффективности средств защиты должна производиться в испытательных центрах (лабораториях), аккредитованных в установленном порядке. Контроль эффективности коллективных средств защиты на рабочих местах должен производиться в соответствии с техническими условиями, но не реже 1 раза в 2 года; индивидуальных средств защиты - не реже 1 раза в год.

Микроволновые печи давно поселились на наших кухнях, но о принципе их работы особо и не думал никто. Зато до сих пор не утихают споры о том, безопасен ли этот прибор для человека или все-таки – нет. Мы решили развенчать все мифы и доказать, что микроволновкам на кухне быть!

Чтобы вы понимали, микроволновки работают на частоте, соразмерной частоте смартфона . Подобные волны задействованы в радиолокации, в спутниковой навигации, даже Солнце излучает определенную долю микроволн.

Само по себе микроволновое излучение опасно для здоровья . Представьте, если бы на вас воздействовали несколько тысяч мобильников, вай-фай роутеров или более десятка вышек сотовой связи. Я говорю о волнах, с которыми есть контакт. По сути, один мощный магнетрон может сварить внутренности человека и взорвать любой продукт в случае длительного воздействия.

Хорошая новость в том, что производители решают этот вопрос, используя технические и конструктивные разработки. Сегодня даже недорогие печи не несут никакого вреда и за них можно голосовать рублем. Именно поэтому вред современной микроволновой печи – это миф .

Как это работает

Все приборы – дешевые и дорогие – работают одинаково. По сути, это металлическая коробка, внутри которой трудится магнетрон, излучающий короткие волны. Если не вдаваться в тонкости, кинетическая энергия преобразуется в тепловую, благодаря чему нагревается еда.

Микроволны способны проникать в пищу на глубину 1.5 см, не более . Весь остальной слой нагревается благодаря естественной теплопроводности. Этот принцип действует абсолютно во всех моделях, поэтому нельзя говорить о том, что какие-то из них безопасней других.

Другое дело – качество сборки. Именно изоляция камеры не дает микроволнам выходить наружу. Сегодня все производители обязаны оснащать печи защитными механизмами и сертифицировать машины на предмет безопасности.

Для бытовых приборов есть два стандарта, нормирующих безопасное излучение:

  • наш, российский – по нему уровень плотности микроволн не должен превышать 5.0 мВт*см2 на расстоянии полуметра от печи;
  • забугорный, американский (ANSI) считает нормой плотность 10 мВт*см2.

Такая существенная разница вызвана тем, что наш стандарт разрабатывался медиками с опорой на главное – здоровье людей. ANSI – труд производителей, которые стремятся к удешевлению продукции. Непоправимый вред несет излучение от 60 мВт/м2 , и именно поэтому в каждой микроволновке есть многоуровневая защита.

Качество сборки и конструктив

Это, так сказать, базовая ступенька защиты. Если техника не проработана конструктивно, она может пропускать волну. Дело в том, что в любой модели вы найдете вентиляционные отверстия. Все они могут считаться источником утечки, если их геометрические размеры больше, чем длина волны .

Исходя из этого, отверстия должны быть выполнены в виде небольших щелей, расположенных вдоль линии протекания тока в камере. Справедливости ради скажу, что все производители соблюдают этот момент, поэтому в печах даже около вентиляции происходит эффект экранировки, – ни у одной волны нет шанса проникнуть наружу .

Дверца

Дверцы микроволновок считаются потенциальным источником утечки, что усугубляется близким расположением пользователя.

Именно поэтому к их конструкции предъявляются усиленные требования:

  • удобство наблюдения за приготовлением, легкий доступ к блюду и защита при открытой дверце;
  • сильная экранировка и недопущение утечки.

Вред можно получить, открыв прибор во время работы, поэтому первый вопрос решается особой конструкцией запорной системы. Производители применяют три, а то и четыре защитных и блокирующих выключателя . С их помощью магнетрон запускается только в момент замыкания контактов (после закрывания дверцы). Типы переключателей могут быть разными, например, защитный Monitor Switch, Door Switch – дверной, Primary/Secondary Switch – первичный/вторичный.

Если говорить о выборе, дальше всех пошли корейцы. В микроволновых печах Samsung реализовано множество технологий, но особенно удачной получилась модель MC32F604TCT. Этот зверь оснащен откидной дверцей, как у традиционного духового шкафа, есть 4 защитных выключателя , биокерамическое покрытие, целый ряд удобств для приготовления разнообразных блюд.

Если вы следуете главному тренду 2017 года – ЗОЖ, корейцы выручат и тут. Модель MW3500 K абсолютно безопасна и позволяет готовить на аэрогриле, что делает блюда без масла очень полезными для здоровья. Более того, вам в помощь залито множество авторецептов, а это снимает лишнюю головную боль в повседневном цейтноте.

Экранирование

Для обеспечения экранировки используется хитрая многорамочная конструкция двери. Смотровое оконце всегда перекрывается металлическим перфорированным листом. Каждое отверстие листа работает как диафрагма и препятствует утечке. Волны отражаются, возвращаются в камеру и просто физически не могут выйти наружу. При выборе проверьте, чтобы диаметр дырочек не превышал 2.3 мм .

Также должна быть обеспечена защита по контуру, так как между шасси прибора и дверцей есть щели. Проблема в том, что они могут увеличиваться в процессе эксплуатации. Тут важен зазор между уплотнителем и камерой, – прилегание должно быть плотным.

Хорошее экранирование есть у любой микроволновой печи, иначе бы она не поступила в продажу . Если вы ищите соло, планируя использовать его для разогрева и разморозки, обратите внимание на модель LG MS-2042 DB . За небольшие деньги вы получите хороший полезный объем на 20 л, оптимальную мощность, электронное управление. Конечно, излишеств и дополнительных опций тут нет.

Большие возможности можно поискать у немцев. Например, машина Bosch BFL634 GS1 может быть встроена в мебельный профиль, есть 7 автоматических программ. Внутри трудится инверторный мотор. Завершает этот бум технологий умное сенсорное управление и яркий дисплей.

Дополнительно отмечу линейку, особо полюбившуюся профессионалам. Это микроволновые печи Electrolux в стиле Rococo . Как говорят шведы, готовка – искусство, а вы – художник. Но, если оставить лирику серия получилась действительно удачной: тут реализован удачный внешний вид и передовые технологии. Например, в модели Electrolux EMM20000OC можно готовить хоть жаркое, хоть шоколадный фондан.

Выводы

Микроволновая печь – абсолютно безвредный прибор, не хуже простого смартфона. Даже еда вопреки проискам конкурентов не утрачивает своей пищевой ценности, попав под гнет микроволн. Сегодня можно спокойно выбирать бюджетные и дорогие модели, главное, чтобы внутри была защитная запорная система, экран и хорошая сборка .