Сущность химической реакции. Закон сохранения массы веществ (химия)

Открытие молекул и атомов явилось важнейшим событием в развитии атомно-молекулярной теории. Ещё в 1748 году великий русский учёный Михаил Васильевич Ломоносов сформулировал закон сохранения массы как философскую концепцию. Он впоследствии сам же подвёл под её доказательство мощную практико-теоретическую базу, и произошло это в 1756 году. Параллельно с российским учёным над этой проблемой работал химик-француз А.Л.Лавуазье. Свой вариант доказательства он предложил в 1789 году.

Закон сохранения массы вещества гласит, что сумма масс всех веществ, которые вступают в химическую реакцию, численно равна массе веществ, являющихся продуктами реакции. Первоначальные способы практически доказать тогда ещё предположение о сохранении масс не увенчались успехом. Дело в том, что опыты, которые проводились ещё до Ломоносова, основывались на сжигании веществ. Результаты взвешивания до и после реакции никак не согласовывались с очевидной, но не подтверждённой на практике теорией. Нагревание на воздухе ртути в результате давало красную окалину, и масса её была больше чем масса вступающего в реакцию металла. С золой, появляющейся после сгорания древесины, результат был противоположный, масса продукта всегда оказывалась меньше массы вещества до осуществления реакции.

Заключается в том, что он, чтобы доказать закон сохранения массы, впервые проводил опыт с замкнутыми системами. Простота опыта в очередной раз доказала гениальность российского учёного. Прокаливаемые металлы Ломоносов помещал в запаянный стеклянный сосуд. После успешно проведенной реакции вес сосуда оставался неизменным. И только когда сосуд разбивали, и вовнутрь устремлялся воздух, наблюдалось увеличение массы сосуда.

Теоретическое объяснение проведённого эксперимента было дано присоединительным характером реакции горения металла. Увеличение массы происходило за счёт присоединения атомов кислорода в продукт окисления. Доказав закон сохранения массы, Ломоносов осуществил весомый вклад в развитие атомно-молекулярной теории. Практически он ещё раз доказал, что атомы химически неделимы. Конструкции молекул в ходе реакций меняются, они обмениваются между собой атомами, но суммарное их количество (атомов) в замкнутой системе остаётся неизменным. Соответственно и общая масса вещества является величиной постоянной.

Закон сохранения массы стал первым вкладом в познании более глобальной природной закономерности. Дальнейшие исследования в этом направлении позволили выявить, что в замкнутых системах происходит не только сохранение масс. Энергия изолированной системы тоже является величиной постоянной. Любой процесс, происходящий в не производит и не уничтожает ни массу, ни энергию. А выявленная закономерность впоследствии получила название: закон сохранения массы и энергии. стали лишь доказательством частного случая величайшего закона природы.

Но на этом познание окружающего нас мира не заканчивается. Труды Эйнштейна продвинули науку ещё дальше, в своей теории он не только доказал взаимосвязь энергии и массы, но и сделал смелое предположение о возможности их преобразования. То, что сейчас кажется понятным обыкновенному школьнику, формировалось в ходе практических опытов и теоретических исследований на протяжении трех последних столетий. Учёные в самых различных областях естествознания по крупицам собирали мощную платформу для доказательства закономерностей и осознания понятий «энергия» и «масса».

Не только физика и химия, но и множество других наук активно используют взаимосвязь и принцип сохранения массы и энергии. Биология, география, астрономия находят применение закону сохранения массы и энергии. Даже философия под влиянием этого закона сформировала современное представление человека о бытии.

· Упругость · Пластичность · Закон Гука · Реология · Вязкоупругость

Закон сохранения массы - закон физики , согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Ранее Эмпедокла «принцип сохранения» применялся представителями Милетской школы для формулировки теоретических представлений о первовеществе, основе всего сущего.

Позже аналогичный тезис высказывали Демокрит , Аристотель и Эпикур (в пересказе Лукреция Кара). Средневековые учёные также не высказывали никаких сомнений в истинности этого закона. В 1630 году Жан Рэ (Jean Rey, 1583-1645), доктор из Перигора, писал Мерсенну :

Вес настолько тесно привязан к веществу элементов, что, превращаясь из одного в другой, они всегда сохраняют тот же самый вес.

Все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется к какому-либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования и т. д.

В дальнейшем, вплоть до создания физики микромира, закон сохранения массы считался истинным и очевидным. Иммануил Кант объявил этот закон постулатом естествознания (1786). Лавуазье в «Начальном учебнике химии» (), приводит точную количественную формулировку закона сохранения массы вещества, однако не объявляет его каким-то новым и важным законом, а просто упоминает мимоходом как о хорошо известном и давно установленном факте. Для химических реакций Лавуазье сформулировал закон так :

Ничто не творится ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции [химической реакции] имеется одинаковое количество материи до и после, что качество и количество начал остались теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано всё искусство делать опыты в химии.

Другими словами, сохраняется масса закрытой физической системы , в которой происходит химическая реакция, а сумма масс всех веществ, вступивших в эту реакцию, равна сумме масс всех продуктов реакции (то есть тоже сохраняется). Масса считается аддитивной.

Современное состояние

В XX веке обнаружились два новых свойства массы.

(M1 ) Масса физического объекта зависит от его внутренней энергии (см. Эквивалентность массы и энергии). При поглощении внешней энергии масса растёт, при потере - уменьшается. Отсюда следует, что масса сохраняется только в изолированной системе , то есть при отсутствии обмена энергией с внешней средой. Особенно ощутимо изменение массы при ядерных реакциях . Но даже при химических реакциях, которые сопровождаются выделением (или поглощением) тепла, масса не сохраняется, хотя в этом случае дефект массы ничтожен. Академик Л. Б. Окунь пишет:

Чтобы подчеркнуть, что масса тела меняется всегда, когда меняется его внутренняя энергия, рассмотрим два обыденных примера:
1) при нагревании железного утюга на 200° его масса возрастает на величину ;
2) при полном превращении некоторого количества льда в воду .

(M2 ) Масса не является аддитивной величиной: масса системы не равна сумме масс её составляющих. Примеры неаддитивности:

  • Электрон и позитрон , каждый из которых обладает массой, могут аннигилировать в фотоны , не имеющие массы поодиночке, а обладающие ею только как система.
  • Масса дейтрона , состоящего из одного протона и одного нейтрона , не равна сумме масс своих составляющих, поскольку следует учесть энергию взаимодействия частиц.
  • При термоядерных реакциях, происходящих внутри Солнца, масса водорода не равна массе получившегося из него гелия.
  • Особенно яркий пример: масса протона (≈938 МэВ) в несколько десятков раз больше массы составляющих его кварков (около 11 МэВ).

Таким образом, при физических процессах, которые сопровождаются распадом или синтезом физических структур, не сохраняется сумма масс составляющих (компонентов) системы, но сохраняется общая масса этой (изолированной) системы:

  • Масса системы получившихся при аннигиляции фотонов равна массе системы, состоящей из аннигилирующих электрона и позитрона.
  • Масса системы, состоящей из дейтрона (с учётом энергии связи), равна массе системы, состоящей из одного протона и одного нейтрона отдельно.
  • Масса системы, состоящей из получившегося при термоядерных реакциях гелия, с учётом выделенной энергии, равна массе водорода.

Сказанное означает, что в современной физике закон сохранения массы тесно связан с законом сохранения энергии и выполняется с таким же ограничением - надо учитывать обмен системы энергией с внешней средой.

Более детально

Чтобы более детально пояснить, почему масса в современной физике оказывается неаддитивной (масса системы не равна - вообще говоря - сумме масс компонент), следует вначале заметить, что под термином масса в современной физике понимается лоренц-инвариантная величина :

где - энергия , - импульс , - скорость света . И сразу заметим, что это выражение одинаково легко применимо к точечной бесструктурной («элементарной») частице, так и к любой физической системе, причём в последнем случае энергия и импульс системы вычисляются просто суммированием энергий и импульсов компонент системы (энергия и импульс - аддитивны).

  • Можно попутно заметить также, что вектор импульса-энергии системы - это 4-вектор , то есть его компоненты преобразуются при переходе к другой системе отсчета в соответствии с преобразованиями Лоренца , поскольку так преобразуются его слагаемые - 4-векторы энергии-импульса составляющих систему частиц. А поскольку масса, определённая выше, есть длина этого вектора в Лоренцевой метрике, то она оказывается инвариантной (лоренц-инвариантной), то есть не зависит от системы отччета, в которой ее измеряют или рассчитывают.

Кроме того, заметим, что - универсальная константа, то есть просто число, которое не меняется никогда, поэтому в принципе можно выбрать такую систему единиц измерения, чтобы выполнялось , и тогда упомянутая формула будет менее загромождена:

как и остальные связанные с нею формулы (и мы ниже будем для краткости использовать именно такую систему единиц).

Рассмотрев уже самый парадоксальный на вид случай нарушения аддитивности массы - случай, когда система нескольких (для простоты ограничимся двумя) безмассовых частиц (например фотонов) может иметь ненулевую массу, легко увидеть механизм, порождающий неаддитивность массы.

Пусть есть два фотона 1 b 2 с противоположными импульсами: . Масса каждого фотона, как известно, равна нулю, следовательно можно записать:

то есть энергия каждого фотона равна модулю его импульса. Заметим попутно, что масса равна нулю за счет вычитания под знаком корня ненулевых величин друг из друга.

Рассмотрим теперь систему этих двух фотонов как целое, посчитав ее импульс и энергию. Как видим, импульс этой системы равен нулю (импульсы фотонов, сложившись, уничтожились, так как эти фотоны летят в противоположных направлениях) :

.

Энергия же нашей физической системы будет просто суммой энергий первого и второго фотона:

Ну и отсюда масса системы:

(импульсы уничтожились, а энергии сложились - они не могут быть разного знака).

В общем случае всё происходит аналогично этому, наиболее отчётливому и простому примеру. Вообще говоря, частицы, образующие систему, не обязательно должны иметь нулевые массы, достаточно, чтобы массы были малы или хотя бы сравнимы с энергиями или импульсами , и эффект будет большим или заметным. Также видно, что точной аддитивности массы нет практически никогда, за исключением лишь достаточно специальных случаев.

Масса и инертность

Отсутствие аддитивности массы, казалось бы, вносит затруднения. Однако они искупаются не только тем, что определённая так (а не иначе, например, не как энергия деленная на квадрат скорости света) масса оказывается лоренц-инвариантной, удобной и формально красивой величиной, но и имеет физический смысл, точно соответствующий обычному классическому пониманию массы как меры инертности.

А именно для системы отстчета покоя физической системы (то есть той системы отсчета, в которой импульс физической системы ноль) или систем отсчета, в которых система покоя медленно (по сравнению со скоростью света) движется, упомянутое выше определение массы

Полностью соответствует классической ньютоновской массе (входит во второй закон Ньютона).

Это можно конкретно проиллюстрировать, рассмотрев систему, снаружи (для внешних взаимодействий) являющейся обычным твердым телом, а внутри содержащую быстро движущиеся частицы. Например, рассмотрев зеркальный ящик с идеально отражающими стенками, внутри которого - фотоны (электромагнитные волны).

Пусть для простоты и большей четкости эффекта сам ящик (почти) невесом. Тогда, если, как в рассмотренном в параграфе выше примере, суммарный импульс фотонов внутри ящика ноль, то ящик будет в целом неподвижен. При этом он должен под действием внешних сил (например если мы станем его толкать), вести себя как тело с массой, равной суммарной энергии фотонов внутри, деленной на .

Рассмотрим это качественно. Пусть мы толкаем ящик, и он приобрел из-за этого некоторую скорость вправо. Будем для простоты сейчас говорить только об электромагнитных волнах, бегущих строго вправо и влево. Электромагнитная волна, отражающаяся от левой стенки, повысит свою частоту (вследствие эффекта Допплера) и энергию. Волна, отражающаяся от правой стенки, напротив, уменьшит при отражении свои частоту и энергию, однако суммарная энергия увеличится, так как полной компенсации не будет. В итоге тело приобретет кинетическую энергию , равную (если ), что означает, что ящик ведет себя как классическое тело массы . Тот же результат можно (и даже легче) получить для отражения (отскока) от стенок быстрых релятивистских дискретных частиц (для нерелятивистских тоже, но в этом случае масса просто окажется суммой масс частиц, находящихся в ящике).

Примечания

Литература

  • Джеммер М. Понятие массы в классической и современной физике . - М.: Прогресс, 1967. (Переиздание: Едиториал УРСС, 2003, ISBN 5-354-00363-6)
  • Окунь Л. Б. Понятие массы (Масса, энергия, относительность). Успехи физических наук, № 158 (1989).
  • Спасский Б. И. История физики . - М .: Высшая школа, 1977.
    • Том 1: часть 1-я часть 2-я
    • Том 2: часть 1-я часть 2-я

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон сохранения массы" в других словарях:

    ЗАКОН СОХРАНЕНИЯ МАССЫ - фундаментальный закон нерелятивистской ньютоновской механики, согласно которому масса вещества, поступающего в замкнутую систему, либо накапливается в ней, либо покидает ее, т. е. масса поступающего в систему вещества минус масса выходящего из… … Экологический словарь

Закон сохранения массы веществ один из важнейших законов химии. Его открыл М. В. Ломоносов, а позже экспериментально подтвердил А. Лавуазье. Так в чем же состоит суть этого закона?

История

Закон сохранения массы веществ впервые сформулировал М. В. Ломоносов в 1748 году, а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756 году. Закон сохранения массы веществ Ломоносов связывал с законом сохранения энергии (количества движения). Он рассматривал эти законы в единстве как всеобщий закон природы.

Рис. 1. М. В. Ломоносов.

Но еще до Ломоносова более 20 веков назад древнегреческий ученый Демокрит предполагал, что все живое и неживое состоит из незримых частиц. позже в XVII веке эти догадки подтвердил Р. Бойль. Он проводил эксперименты с металлом и древесиной и выяснил, что вес металла после нагревания увеличился, а вес золы по сравнению с деревом, наоборот, уменьшился.

Независимо от М. В. Ломоносова закон сохранения массы вещества был установлен в 1789 году французским химиком А. Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.

Взгляды Ломоносова и Лавуазье были подтверждены современной наукой. В 1905 году А. Эйнштейн показал, что между массой тела (m) и его энергией (E) существует связь, выражаемая уравнением:

где c – скорость света в вакууме.

Рис. 2. Альберт Эйнштейн.

Таким образом, закон сохранения массы дает материальную основу для составления уравнений химических реакций.

Суть закона сохранения массы вещества

Закон сохранения массы вещества заключается в следующем: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Рис. 3. Закон сохранения массы вещества.

При написании уравнений химических реакций надо следить за соблюдением этого закона. Число атомов элемента в левой и правой частях реакций должно быть одинаковым, так как атомные частицы в химических превращениях неделимы и никуда не исчезают, а лишь переходят из одного вещества в другое. Сущность химической реакции – разрыв одних связей и образование других связей. Поскольку эти процессы связаны с затратой и получением энергии, то знак равенства в реакциях можно ставить, если учтены энергетические факторы, условия реакции, агрегатные состояния веществ.

Очень часто знак равенства, особенно в неорганических реакциях, ставят и без учета необходимых факторов,производя упрощенную запись. При уравнивании коэффициентов вначале уравнивают число атомов металла, потом неметалла, затем водорода и в конце производят проверку по кислороду.

Что мы узнали?

Закон сохранения массы вещества изучают в школе по химии 8 класса, так как понимание его сути необходимо для правильного составления уравнений реакций. О том, что любая материя на земле состоит из невидимых частиц предположил еще древнегреческий ученый Демокрит, а его более современные последователи Ломоносов, Лавуазье, Эйнштейн доказали это экспериментально.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 162.

Закон сохранения массы и энергии

После доказательства существования атомов и молекул важнейшим открытием атомно-молекулярной теории стал закон сохранения массы, который был сформулирован в виде философской концепции великим русским ученым Михаилом Васильевичем Ломоносовым (1711-1765) в 1748 г. и подтвержден экспериментально им самим в 1756 г. и независимо от него французским химиком А.Л.Лавуазье в 1789 г.

Масса всех веществ, вступающих в химическую реакцию, равна массе всех продуктов реакции.

Опыты по сжиганию веществ, которые проводились до Ломоносова, наводили на мысль о том, что масса веществ в процессе реакции не сохраняется. При нагревании на воздухе ртуть превращалась в красную окалину, масса которой была больше массы металла. Масса золы, образующейся при сгорании дерева, напротив, всегда меньше массы исходного вещества.

Ломоносов провел простой опыт, который показал, что горение металла есть реакция присоединения, а увеличение массы металла происходит за счет присоединения части воздуха. Он прокаливал металлы в запаянном стеклянном сосуде и обнаружил, что масса сосуда не изменялась, хотя химическая реакция происходила. После того, как сосуд был вскрыт, туда устремлялся воздух, и масса сосуда увеличивалась. Таким образом, при аккуратном измерении массы всех участников реакции выясняется, что масса веществ при химической реакции сохраняется. Закон сохранения массы имел огромное значение для атомно-молекулярной теории. Он подтвердил, что атомы являются неделимыми и при химических реакциях не изменяются. Молекулы при реакции обмениваются атомами, но общее число атомов каждого вида не изменяется, и поэтому общая масса веществ в процессе реакции сохраняется.

Закон сохранения массы является частным случаем общего закона природы - закона сохранения энергии, который утверждает, что энергия изолированной системы постоянна. Энергия - это мера движения и взаимодействия различных видов материи. При любых процессах в изолированной системе энергия не производится и не уничтожается, она может только переходить из одной формы в другую.

Одной из форм энергии является так называемая энергия покоя, которая связана с массой соотношением Эйнштейна

где с - скорость света в вакууме (с = 3 108 м/с). Это соотношение показывает, что масса может переходить в энергию и наоборот. Именно это и происходит во всех ядерных реакциях, и поэтому закон сохранения массы в ядерных процессах нарушается. Однако, закон сохранения энергии остается справедливым и в этом случае, если учитывать энергию покоя.

В химических реакциях изменение массы, вызванное выделением или поглощением энергия, очень мало. Типичный тепловой эффект химической реакции по порядку величины равен 100 кДж/моль. Посчитаем, как при этом изменяется масса:

∆m = ∆E/с2 = 105 / (3 108)2 ~ 10-12 кг/моль = 10-9г/моль.


Примеры решения задач

1.Определите массу иодида натрия NaI количеством вещества 0,6 моль.

Дано: ν(NaI)= 0,6 моль.

Найти: m(NaI) =?

Определяем массу NaI:

Ответ: 90 г.

2.Определите количество вещества атомного бора, содержащегося в тетраборате натрия Na 2 B 4 O 7 массой 40,4 г.

Дано: m(Na 2 B 4 O 7)=40,4 г.

Найти: ν(B)=?

Решение. Молярная масса тетрабората натрия составляет 202 г/моль. Определяем количество вещества Na 2 B 4 O 7:

ν(Na 2 B 4 O 7)= m(Na 2 B 4 O 7)/ М(Na 2 B 4 O 7) = 40,4/202=0,2 моль.

Вспомним, что 1 моль молекулы тетрабората натрия содержит 2 моль атомов натрия, 4 моль атомов бора и 7 моль атомов кислорода (см. формулу тетрабората натрия). Тогда количество вещества атомного бора равно:

ν(B)= 4 ν (Na 2 B 4 O 7)=4 0,2 = 0,8 моль.


Ответ: 0,8 моль

3.Какую массу фосфора надо сжечь для получения оксида фосфора (V) массой 7,1 г?

Дано: m(P 2 O 5)=7,1 г.

Найти: m(Р) =?

Решение: записываем уравнение реакции горения фосфора и расставляем стехиометрические коэффициенты.

4P+ 5O 2 = 2P 2 O 5

Определяем количество вещества P 2 O 5 , получившегося в реакции.

ν(P 2 O 5) = m(P 2 O 5)/ М(P 2 O 5) = 7,1/142 = 0,05 моль.

Из уравнения реакции следует, что ν(P 2 O 5)= 2 ν(P), следовательно, количество вещества фосфора, необходимого в реакции равно:

ν(P 2 O 5)= 2 ν(P) = 2 0,05= 0,1 моль.

Отсюда находим массу фосфора:

m(Р) = ν(Р) М(Р) = 0,1 31 = 3,1 г.

Ответ: 3,1 г.

4. Какая масса хлорида аммония образуется при взаимодействии хлороводорода массой 7,3 г с аммиаком массой 5,1 г? Какой газ останется в избытке? Определите массу избытка.


Дано: m(HCl)=7,3 г; m(NH 3)=5,1 г.

Найти: m(NH 4 Cl) =? m(избытка) =?

Решение: записываем уравнение реакции.

HCl + NH 3 = NH 4 Cl

Эта задача на «избыток» и «недостаток». Рассчитываем количества вещества хлороводорода и аммиака и определяем, какой газ находится в избытке.

масса химическая атом сохранение закон

ν(HCl) = m(HCl)/ М(HCl) = 7,3/36,5 = 0,2 моль;

ν(NH 3) = m(NH 3)/ М(NH 3) = 5,1/ 17 = 0,3 моль.

Аммиак находится в избытке, поэтому расчет ведем по недостатку, т.е. по хлороводороду. Из уравнения реакции следует, что ν(HCl) = ν(NH 4 Cl) = 0,2 моль. Определяем массу хлорида аммония.

m(NH 4 Cl) = ν(NH 4 Cl) М(NH 4 Cl) = 0,2 53,5 = 10,7 г.

Мы определили, что аммиак находится в избытке (по количеству вещества избыток составляет 0,1 моль). Рассчитаем массу избытка аммиака.

m(NH 3) = ν(NH 3) М(NH 3) = 0,1 17 = 1,7 г.

Ответ: 1,7 г.

5.Какая масса 12 моль нетрата алюминия?

Дано: ν(AL(NO3)3)= 12 моль

Найти: m (AL(NO3)3)=?


Решение:Mr (AL(NO3)3= 27+14*3+16*9=27+42+144=213 г/моль

m=M* ν 213*12=2556г

Ответ: 2556г

6.сколько молей карбоната магния в 64г. Карбоната магния?

Дано: m(Mg Co3)=64

Найти: ν(Mg Co3)=?

Решение: Mr(Mg Co3)=24+12+16*3=36+48=84 г/моль

ν =m/M 64/84=0.76 моль

Ответ: 0.76 моль

7. Сколько молей в 420г. Fe O?

Дано: m(Fe O)=420г.

Найти: ν(Fe O)=?

Решение: Mr(Fe O)=56+16=72

ν =m/M 420/72=5,8 моль

Ответ: 5,8 моль

8.Какова масса поваренной соли в 2,5 молях вещества?

Дано: ν(NaCl)=2,5 моль

Найти: m(NaCl)=?

Решение: Mr(NaCl)=23+35=58

m=M* ν 58*2,5=145г.

Ответ:145г.

9.Сколько молей в 250 г ZnO?

Дано: m(ZnO)=250г

Найти: ν(ZnO)=?

Решение: (ZnO)=65+16=81 г/моль


ν =m/M 250/81=3

Ответ:3 моля

10.Определите массу иодида натрия NaI?

Дано: ν(NaI)= 0,6 моль.

Найти: m(NaI) =?

Решение. Молярная масса иодида натрия составляет:

M(NaI) = M(Na) + M(I) = 23 + 127 = 150 г/моль

Определяем массу NaI:

m(NaI) = ν(NaI) M(NaI) = 0,6 150 = 90 г.

Ответ: 90 г


И энергия сохраняются не по-отдельности, а вместе: взамен двух по видимости разных законов сохранения ньютоновской физики в релятивистской физике действует один - объединенный закон сохранения массы и энергии. Первый пример превращений массы и энергии Эйнштейн дал в том же 1905 году. Он рассуждал об излучении телом электромагнитных волн, причем считалось, что волны уходили от тела симметрично в...

Несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы не действуют, то при любых взаимодействиях тел сумма кинетической и потенциальной энергий тел остается постоянной. Это утверждение называется законом сохранения энергии в механических процессах. Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Поэтому...

Новому направлению исследований – химической физике, дисциплине, промежуточной между физикой и химией. 4. Загрязнение окружающей среды. Атмосфера, вода, почва, пища Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы. Среди них – газообразные и аэрозольные загрязнители промышленно-бытового происхождения. Прогрессирует и...

Пространства следует фундаментальный закон природы - закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени. Симметрия и процесс познания Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нётер (1882-1935). Она сформулировала и доказала фундаментальную теорему математической физики, ...

Атомно-молекулярное учение

В 1858 г. почти через 50 лет после открытия Авогадро итальянский химик С. Канницаро (1826–1910) обнаружил работы Авогадро и увидел, что они позволяют четко разграничить понятия "атом" и "молекула" для газообразных веществ. Именно Канницаро предложил определения атома и молекулы и внес полную ясность в понятия "атомный вес" и "молекулярный вес".

В 1860 г. в Карслуэ (Германия) состоялся Первый международный химический конгресс, на котором после долгих дискуссий были сформулированы основные положения атомно-молекулярного учения :

· вещества состоят из молекул – наименьших частиц вещества, обладающих его химическими свойствами;

· молекулы состоят из атомов, которые соединяются друг с другом в определенных отношениях;

· атом – наименьшая частица элемента в химических соединениях;

· разным элементам соответствуют разные атомы;

· атомы и молекулы находятся в постоянном самопроизвольном движении;

· при химических реакциях молекулы одних веществ превращаются в молекулы других веществ;

· атомы при химических реакциях не изменяются;

· молекулы простых веществ состоят из одинаковых атомов  (O 2 , P 2 , N 2  и т.д.), молекулы сложных веществ – из разных атомов  (H 2 O, HСl  и т.д.);

· свойства молекул зависят не только от их состава, но и от способа, которым атомы связаны друг с другом.

Современная наука развила классическую атомно-молекулярную теорию, а некоторые ее положения были пересмотрены. Было установлено, что атом не является неделимым бесструктурным образованием. Выяснилось, что не во всех случаях частицы, образующие вещество, являются молекулами. Многие химические соединения, особенно в жидком и твердом состоянии, имеют ионную структуру, например, соли. Некоторые вещества, например, инертные газы состоят из отдельных атомов, слабо взаимодействующих между собой.

И, наконец, при нагревании до температур порядка тысяч и миллионов градусов вещество переходит в особое состояние – плазму, которая представляет собой смесь атомов, положительных ионов, электронов и атомных ядер.

Фундаментальным законом естествознания является закон сохранения массы вещества , который был сформулирован в 1748 г. в виде философской концепции великим русским ученым М.В. Ломоносовым (1711–1765) и подтвержден экспериментально им самим в 1756 г., а также независимо от него - французским химиком А.Л. Лавуазье в 1789 г.

Закон сохранения массы вещества гласит: масса веществ, вступающих в химическую реакцию, равна массе всех продуктов реакции .

Опыты по сжиганию веществ, которые проводились до Ломоносова, наводили на мысль, что масса веществ в процессе реакции не сохраняется. При нагревании на воздухе ртуть превращалась в красную окалину, масса которой была больше массы металла. Масса золы, образующейся при сгорании дерева, напротив, всегда меньше массы исходного вещества. Немецкий врач и химик Эрнст Шталь (1660–1734) пытался объяснить эти явления тем, что горючие вещества содержат некоторую субстанцию – флогистон , которая в процессе горения улетучивается или передается от одного вещества к другому. Это означало, что горение вещества есть реакция разложения на флогистон и негорючий остаток. Но тогда получалось, что есть положительный флогистон (содержится в дереве), который приводит к уменьшению массы при горении, и отрицательный (в металлах), который дает увеличение массы.



Ломоносов провел простой опыт, который показал, что горение металла есть реакция присоединения, а увеличение массы металла происходит за счет присоединения части воздуха. Он прокаливал металлы в запаянном стеклянном сосуде и обнаружил, что масса сосуда не изменялась, хотя химическая реакция происходила.

К сожалению, открытие Ломоносова не было замечено зарубежными учеными, а закон сохранения массы вещества утвердился в химии только после опытов Лавуазье, который проводил реакции сжигания металлов и восстановления оксидов металлов углем, и ни разу не обнаружил увеличения или уменьшения массы продуктов реакции по сравнению с исходными веществами.

Закон сохранения массы вещества имел огромное значение для атомно-молекулярной теории. Он подтвердил, что атомы являются неделимыми и при химических реакциях не изменяются. Молекулы при реакции обмениваются атомами, но общее число атомов каждого вида не изменяется и поэтому общая масса веществ в процессе реакции сохраняется. Закон сохранения массы вещества является частным случаем общего закона природы - закона сохранения энергии , который утверждает, что энергия изолированной системы постоянна . Энергия – это мера движения и взаимодействия различных видов материи. При любых процессах в изолированной системе энергия не производится и не уничтожается, она может переходить из одного вида в другой. Например, энергия электромагнитного излучения, действующего на молекулу, может переходить в энергию вращательного движения молекулы или поступательного движения атомов; напротив, энергия химического взаимодействия может переходить в энергию излучения.

Закон сохранения энергии как философский принцип не выводится из более общих постулатов. С физической точки зрения закон сохранения энергии является следствием однородности времени , т.е. того факта, что законы природы со временем не меняются.

Закон сохранения массы вещества не выполняется в ядерных реакциях, что объясняется на основе принципа эквивалентности массы и энергии, сформулированного Эйнштейном и выражаемого самой знаменитой в мире формулой: Е = mc 2 .

Это соотношение показывает, что масса может переходить в энергию и наоборот, что и происходит в ядерных реакциях. В химических реакциях изменение массы, вызванное выделением или поглощением энергии, очень мало и не поддается экспериментальной регистрации. Поэтому можно утверждать, что в химических реакциях закон сохранения массы выполняется с очень высокой степенью точности.